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Introduction

The Mock LISA Data Challenges (MLDC) consist in extracting the maximum amount of information about the binary source(s) that generate gravitational wave signal(s) contained in the (mock) data sets that were distributed in late June 2006.  The goals of this Challenge are:  (1) to foster the development and validation of building blocks of, and basic tools for, LISA data analysis; and (2) to tackle analysis of data sets containing a single signal or non-overlapping multiple signals embedded in Gaussian and stationary noise, with no contribution from galactic and/or extragalactic foregrounds.

The basic LISA response to gravitational waves can either be the phase response used in the LISA Simulator or the fractional frequency response used in Synthetic LISA.  The phase and fractional frequency formalisms are equivalent, and related by simple time integration.  Both data streams are distributed for the Challenges.  The frequency measurements have the advantage of being directly proportional to the gravitational strain; the phase measurements have the advantage of representing more closely the actual output of the LISA parameters.  In our approach, we focus on the LISA Simulator data sets (phase response) for Challenges 1.1.1a, 1.1.1b, 1.1.2, and 1.1.3.  We skipped over Challenge 1.1.1c because the frequency range near 10mhZ is beyond the low-pass filter range in the MLDC_galactic.c code (which is apparently tailored to sources less than 5mHz).  We did not attempt to create or select an alternate high-pass filter code at this time.  We do however adopt the MLDC_galactic.c code in its entirety as provided by the Challenge Team.  We would like to have covered more of the Challenge – Round 1; but due to extensive time in ramping up and in running multiple simulations, we ran out of time before the 1 December 06 deadline.  We are however continuing on the remaining parts for Round 1, and are awaiting the release of Round 2.

The approach adopted is user-refined multi-dimensional grid search method, with prior FFTs to locate possible best-guess source frequencies used to initiate search.  This is a minor refinement of the exhaustive grid search method in the MLDC_galactic.c code, and our modifications are discussed below.  Our concern has been to succeed in reproducing correct results through use the provided exhaustive grid search methods before trying to optimize the code or otherwise consider alternative signal extraction methods.  Our metrics for “correctness” are stability in the converged frequency at the 9th to 12th significant figure between search simulations; converged signal to noise ratio (SNR) of greater than 15; and a converged positive log-likelihood value.  These values are provided in the MLDC code by the ‘get_SNR_logL’ routine within the MLDC code’s parameter search loops.  Our deployment of the code on various machines is discussed below; we are also attempting a benchmarking of systems for these searches.

Derived Parameters for the Challenges

LISA Challenge data are 1-year records with a sampling cadence of every 15seconds.  A typical non-coalescing galactic binary system is described by seven parameters, namely the amplitude, frequency, HEC colatitude, HEC longitude, polarization angle, binary source inclination wrt line-of-sight direction, and initial orbital phase.  To describe more complicated binary systems that change in time will require additional parameters such as orbit eccentricity and first and second derivatives of the frequency.  In Challenges 1.1.1a and b, and in the verification and resolvable binary Challenges (1.1.2 and 1.1.3), these seven parameters are derived based on our modified multi-dimensional grid search method.  Both from published literature and from personal conversations with Team members, we recognize that these seven parameters can be conveniently divided into two categories, namely stationary and non-stationary ones.  During our search process, we have effectively “separated” (stationary) frequency, theta, and phi from the other parameters, and these are made to converge first (holding psi, iota, and iphase outside the search).  Once these three parameters are stable in SNR and log-likelihood, their values are held (roughly) constant while convergence is sought for psi, iota, and iphase.  SNR and log-likelihood continue to improve and refine.  Finally, the amplitude is found in a one-step search; the range is restricted to a range of 10-21 to 10-25 based on realistic physics.  The details of our grid search refinement are discussed in a following section.

Initial Identification of signals based on FFT

The response of a space-borne instrument to a gravitational wave source is encoded in the Michelson-like time-delay interferometry (TDI) variables X, Y, Z.  Rather than work with the correlated variables directly, the MLDC_galactic.c code provides the signal combination channels ‘A’ and ‘E’ to identify the signals.  The A, E combinations cancel the laser phase (shot noise) that would otherwise dominate the Michelson signals; they are effectively orthogonal mappings of the triangular (X,Y,Z) references into a Cartesian framework.  The A and E time-series are constructed based on the following equations:


[image: image1.wmf]
Once A and E are created, we apply Matlab FFT routines to the A and E time-series, and the power spectrum of the time series is computed based on the resultant absolute value.  The Figures 1 and 2 shows the power spectrum of A and E for Challenges 1.1.1a and b. Since we know the frequency range for specific challenges from MLDC, we focused on narrowed frequency ranges.  As an initial guess from Figures 1 and 2, a center frequency and structurally driven range is selected for the respective Challenges.
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Figure 1:  Challenge 1.1.1a  Power Spectrum of A and E channels
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Figure 2:  Challenge 1.1.1 b Power Spectrum of A and E channels

Note that for Challenge 1.1.1a, the signal structure is very simple compared to that for Challenge 1.1.1b.  From Figure 1 and 2, the A and E power spectra structure determines the cutoff frequency search range.  In Figure 2, there are various secondary peaks, and it is hard to visually identify which frequency should be considered as an initial guess.  We start with the highest peak value in the power spectrum from A and E, and the width for frequency search includes the entire relevant signal structure (not just width at half-max, for example).

Challenges 1.1.2 and 1.1.3 provide a different issue not just because of 20 signals in the blind datasets (and for 1.1.2, do we “see” all 20 given sources), but also due to close proximity and overlap in the signal structure in the frequency space for the resolvable binaries in 1.1.3.  However, our initial approach is the same; that is, carry out FFT on the A and E time-series and look for sources.  Then select center frequency and ranges for the search, and select starting values for the other parameters.  Derive f, theta, and phi first; derive psi, iota, and iphase next; converge amplitude last, and check for continual improvement in SNR and LogL.

System Specifications

Challenge 1.1.1a and b were launched on our division’s Sun Server that has 8 x 900MHz processors with 16 GB RAM. In the Sun Sparc Server, one CPU is allocated with 12.45 percent usage (maximum) limit for each search process.  Because of this obligatory low usage allocation, many hours (days) were consumed in order to extract the stationary and non-stationary source parameters.  Typically 12-17 simulation runs were made per challenge, each with a justifiable user-defined improvement in grid refinement, and using previously converged values of the respective parameters to restart the search in the next simulation.  Because of the long time needed for such runs, we sought a cluster node approach in order to run the 20 source searches in Challenges 1.1.2 and 1.1.3.

We performed Challenges 1.1.2 and 1.1.3 with our available Red Hat Linux cluster system to achieve greater speed in extracting the source parameters.  Each GW source was assigned a specific node, so that all 20 runs could be done in parallel.  However, there is obviously no interaction between the 20 searches, so each is a single thread.  The cluster system has a central server with 2GB RAM, currently with 40 nodes (2 processors per node), 20 nodes of which are allocated to our MLDC project.  Each node has 1GB RAM/node with AMD Athlon(tm) MP 2600+ (2200 MHz) processor.  Onboard cache is 256 KB.  The MLDC multi-dimensional grid search is CPU intensive rather than memory intensive.  To overcome CPU intensive problem, dedicated nodes are used for a specific search with a given template parameter.  Each node has dual processors and two search processes is performed per node. The CPU usage is 100% for each search process.  We also intend to re-run Challenges 1.1.a and 1.1.b on this cluster (outside of the Round 1 MLDC deadlines) now that we have access to this system.

User-Refined Multi-dimensional Grid Search Details

As noted in an earlier section, to define simple galactic binary sources, a minimum of 7 parameters have to be calculated.  The grid search is thus in the seven dimension space, and we want to obtain the best convergence values for all parameters.  Even after a signal frequency has been found, extracting the most likely source parameters for the remaining 6 parameters still requires searching a huge parameter space. Finding all acceptable parameters, or finding the range of acceptable parameters requires an even more thorough search.  Given the complexity of the search space, it is a challenge to decide how to move from a coarse grid to a fine grid and still obtain the best acceptable solution; in particular, this means how to guarantee that we remain and evolve on the optimal log-likelihood surface for the parameter space.
Searching in only one dimension at a time on any grid, it is easy to get stuck at any one point on a diagonal ridgeline, when the true value is located a diagonal distance away on the same ridgeline.  Searching at least three dimensions (stationary or non-stationary) at a time avoids this trivial trap, and has worked fairly well in our searches.  Thus we converge first the stationary, then the non-stationary, then the amplitude.

Our deployed multi-dimensional grid search method and iteration steps are as follows:

(i) Discretize the space in coarse grids (operationally defined and presented below) to cover the entire ranges of the parameters.  Adopt the initial guess for the center frequency by evaluating the energy level at specific frequencies in the A and E FFTs.  For the rest of the parameters, the midpoint of the full parameter range in radians is considered as the starting points for the search simulation.  Start the search with the initial three dimensions of frequency, theta, and phi.

(ii) Compute the log-likelihood and SNR at each converged search step, and check that they both improve in a positive direction.  Note that the MLDC_galactic.c code requires calculation of ‘get_SNR_logL’ at each step in the search across the grids.  After each complete iteration, the current values of the converged 3 parameters are set as new initial templates for a refined grid and step size. (see mesh refinement section below)

(iii) Steps (i) and (ii) are applied recursively until the step size in each dimension reaches ‘1’ (see below).

(iv) Once the initial 3 parameters are considered stable on the finest grid, the next three parameters are evaluated by replicating steps (i) through (iii) above for psi, iota and iphase, while keeping f, theta and phi at their converged values.

(v) The last parameter search is for amplitude, in a one-step search-grid, using the other 6 converged parameters.

(vi) Note:  In each step, the log likelihood value must increase to a positive value or should stay stable.  If it goes from positive to negative direction, the search process can be terminated and the template values should be adjusted.

Within 12 or 15 recursive simulations, the 6 parameters are converged across a coarse grid to an increasingly finer grid.  The grid search adopted here is rectilinear grid search; progress is based on improved values for log-likelihood and signal noise ratio.  The SNR and log-likelihood increase together linearly as the search changes from coarse to fine grid.  We change the grid in order to remain to the same log-likelihood surface in 3- or 6-parameter space.

Grid Refinement Protocol

Challenges 1.1.1.a and 1.1.1.b  (Single Galactic Binaries)

Initially the coarse grid is constructed to cover the entire relevant range for a given parameter.  Excepting frequency, other parameters are started at their range mid-point and the spread covers both sides of the mid-point.  Table 1 shows details of all simulation runs for Challenge 1.1.1a.  A total of 15 simulation runs were performed to derive the 7 source parameters.  The indicated 3-vector in each parameter column, e.g. (-200,200,10), refers to the search frequency range covered (-200 to +200) and with an iteration grid-step search increment of 10.  Changing 10 ( 5 ( 2 ( 1 determines the shift from coarse grid to fine grid; commensurate with this, the frequency search range also narrows.  By run 8, the frequency, theta, and phi have converged. The log-likelihood and SNR values stabilize in runs 6, 7 and 8, and this determines the final values of frequency, theta, and phi.  These values are then locked in and psi, iota, and iphase are searched.  During these search sequences, frequency, theta and phi are allowed to float, but are confined to the converged region.  The iterative grid-steps reduce from 50 to 1. The 12th , 13th , and 14th runs show stability in the log-likelihood and SNR across all 6 parameters.  The last parameter is dimensionless amplitude, which is searched in the range of 10-21 to 10-25.  This run uses only a fine grid (iterative step as 1), and all other parameters ranges are kept close to their converged values.  The highlighted values in Table 1 in the log-likelihood and SNR columns show stability across the respective three runs while the grid is refined to its finest level.  This stability is our confidence metric.

Table 1. Challenge 1.1.1a Grid Search Method

	Run
	Amplitude
	Frequency
	Theta
	Phi
	Psi
	Iota
	Phase
	Log Likelihood
	SNR

	1
	
	(-200, 200, 10)
	(-160, 157, 10)
	(-314, 314, 10)
	
	
	
	373.463
	29.038

	2
	
	(-100, 100, 5)
	(-160, 157, 10)
	(-314, 314, 10)
	
	
	
	427.634
	31.908

	3
	
	(-100, 100, 2)
	(-160, 157, 5)
	(-314, 314, 5)
	
	
	
	518.310
	36.564

	4
	
	(-50, 50, 1)
	(-160, 157, 2)
	(-314, 314, 2)
	
	
	
	518.790
	36.547

	5
	
	(-25, 25, 1)
	(-80, 80, 2)
	(-160, 160, 2)
	
	
	
	518.790
	36.547

	6
	
	(-15, 15, 1)
	(-40, 40, 1)
	(-80, 80, 1)
	
	
	
	518.871
	36.573

	7
	
	(-5, 5, 1)
	(-20, 20, 1)
	(-20, 20, 1)
	
	
	
	518.871
	36.573

	8
	
	(-5, 5, 1)
	(-5, 5, 1)
	(-5, 5, 1)
	
	
	
	518.871
	36.573

	9
	
	(-5, 5, 1)
	(-5, 5, 1)
	(-5, 5, 1)
	(-320, 320, 50)
	(-320, 320, 50)
	(-320, 320, 50)
	1287.708
	50.748

	10
	
	(-5, 5, 1)
	(-5, 5, 1)
	(-5, 5, 1)
	(-160, 160, 40)
	(-160, 160, 40)
	(-160, 160, 40)
	1300.135
	50.996

	11
	
	(-5, 5, 1)
	(-5, 5, 1)
	(-5, 5, 1)
	(-160, 160, 20)
	(-160, 160, 20)
	(-160, 160, 20)
	1302.737
	51.503

	12
	
	(-5, 5, 1)
	(-5, 5, 1)
	(-5, 5, 1)
	(-80, 80, 10)
	(-80, 80, 10)
	(-80, 80, 10)
	1302.998
	51.049

	13
	
	(-5, 5, 1)
	(-5, 5, 1)
	(-5, 5, 1)
	(-40, 40, 5)
	(-40, 40, 5)
	(-40, 40, 5)
	1302.998
	51.049

	14
	
	(-5, 5, 1)
	(-5, 5, 1)
	(-5, 5, 1)
	(20, 20, 1)
	(-20, 20, 1)
	(-20, 20, 1)
	1302.998
	51.049

	15
	(-210, -250, 1)
	(-2, 2, 1)
	(-2, 2, 1)
	(-2, 2, 1)
	(-2, 2, 1)
	(-2, 2, 1)
	(-2, 2, 1)
	1288.592
	51.048


Table 2 presents the resulting converged values for the source parameters during our multi-dimensional grid search method for Blind Challenge 1.1.1a, using the method refinement outlined in Table 1, along with and the final log-likelihood and SNR values.

Table 2. Challenge 1.1.1a Source Results

	Variables for Challenge 1.1.1a
	Converged Values

	Frequency (Hz) (f)
	0.00106273333231683589

	Ecliptic latitude (theta)
	2.14

	Ecliptic longitude (phi)
	1.961593

	Polarization (psi)
	0.380796

	Initial Phase (iphase)
	5.0215930

	Inclination (iota)
	-0.309204

	Amplitude (A)
	1.584893 x 10-22


A similar approach is adopted for Challenge 1.1.1b.  The range of frequency is higher than the earlier challenge because of the more complicated structure seen in Figure 2 for the A and E signatures.  Refer to Table 3 below for the method protocol.  Note, the range needed to cover the entire frequency structure starts with (-10000, 10000), with an initial grid step interval of 100.  In each run for the initial three parameters, the range and step size are decreased by half.  The log-likelihood and SNR values are seen to increase in each run until the run step-size is ‘1’ (finest grid).  In the 6th run, all step sizes in the search have been reduced to 1.  The next series of runs similarly focus on the next three parameters, while floating the first three parameters.  The computation cost of Challenge 1.1.1a is comparatively cheaper than for 1.1.1b.  For Challenge 1.1.1b, the computation cost has taken more than 12 cpu-hours for each run.  Similar to the Challenge 1.1.1a presentation, Table 3 below provide the details of the grid refinement strategy, and the resulting final SNR and log-likelihood values.  Note the final SNR is 32.769, and the final log-likelihood value is 536.81.  Converged parameter results are given in Table 4.

Table 4. Challenge 1.1.1b Source Results

	Variables for Challenge 1.1.1b
	Converged Values

	Frequency (Hz) (f)
	0.00300037829081217398

	Ecliptic latitude (theta)
	0.51

	Ecliptic longitude (phi)
	4.621593

	Polarization (psi)
	5.020796

	Initial Phase (iphase)
	3.965159

	Inclination (iota)
	5.090795

	Amplitude (A)
	3.981072 x 10-23


Table 3. Challenge 1.1.1b Grid Search Method
	Run
	Amplitude
	Frequency
	Theta
	Phi
	Psi
	Iota
	Phase
	Log Likelihood
	SNR

	1
	
	(-10000, 10000, 100)
	(-160, 160, 20)
	(-320, 320, 40))
	
	
	
	47.760
	13.563

	2
	
	(-10000, 10000, 50)
	(-80, 80, 10)
	-160, 160, 20)
	
	
	
	47.760
	13.563

	3
	
	(-5000, 5000, 25)
	(-40, 40, 5)
	(-80, 80, 10)
	
	
	
	156.689
	18.377

	4
	
	(-2500, 2500, 10)
	(-20, 20, 2)
	(-40, 40, 5)
	
	
	
	156.689
	18.377

	5
	
	(-2500, 2500, 5)
	(-20, 20, 1)
	(-40, 40, 1)
	
	
	
	158.240
	18.436

	6
	
	(-2000, 2000, 1)
	(-10, 10, 1)
	(-20, 20, 1)
	
	
	
	247.797
	22.284

	7
	
	(-2,2,1)
	(-2, 2,1)
	(-2,2,1)
	(-400,400,50)
	(-400,400, 50)
	(-400,400,50)
	452.0413
	30.1017

	8
	
	(-2,2,1)
	(-2, 2,1)
	(-2,2,1)
	(-200,200,25)
	(-200,200,25)
	(-200,200,25)
	477.397864
	30.90725

	9
	
	(-2,2,1)
	(-2, 2,1)
	(-2,2,1)
	(-200,200,10)
	(-200,200,10)
	(-200,200,10)
	504.238
	31.7573

	10
	
	(-2,2,1)
	(-2, 2,1)
	(-2,2,1)
	(-150,150,5)
	(-150,150,5)
	(-150,150,5)
	522.41
	32.33108

	11
	
	(-1,1,1)
	(-1,1,1)
	(-1,1,1)
	(-30,30,1)
	(-30,30,1)
	(-30,30,1)
	528.927
	32.528

	12
	(-210, 250, 1)
	(-2,2,1)
	(-2,2,1)
	(-2,2,1)
	(-2,2,1)
	(-2,2,1)
	(-2,2,1)
	536.813
	32.768807


Challenge 1.1.2 (Verification Binaries)

Given frequency, theta, and phi from the MLDC document, we searched for psi, iota, iphase, and amplitude only.  The psi, iota, and iphase has a range from -320, 320 with a step size of ‘1’. The starting template values for psi and iota are ‘pi/2’, and iphase is ‘pi’.

Unlike Challenges 1.1.1a and b, we have not performed multi-dimensional grid approach in Challenge 1.1.2.  Instead, one full run, using the fine grid only, was performed to finalize and extract the source parameters, except amplitude.  Each of the 20 targets was assigned to its own cluster-node.  Note that the signal noise ratio in EIPsc and in bltOPEN20 is below 10 [highlighted in Table 5]. We therefore suspect that these converged results are wrong.  These two experiments are being repeated for validity and still the converged values are high.  Also note, the log-likelihood and SNR for source RXJ0806 reached abnormally high positive values – this is either a gross error or an extremely well-done result!  For the rest of the Verification Binaries, amplitude was finalized during a second grid search process with fixed 6 dimension template parameters listed in Table 5 and in the challenge dataset [f, theta, and phi].  Note in the amplitude column, some of the values have repeated among various sources.  We do not understand this repetition; were it only in the synthetic binaries, we could assume the model was repeated.  But some of the repeats are in the actual known verification binaries as well.  Overall, the final converged source parameters, along with SNR and Log Likelihood, for Challenge 1.1.2 are provided in Table 5.

Table 5.  Challenge 1.1.2 Grid Search Method

	Name
	Amplitude
	Psi
	Iota
	Phase
	Log Likelihood
	SNR

	RXJ0806
	2.511886e-22
	4.100796
	3.100796
	5.171593
	121295.22
	495.7474

	V407Vul
	3.981072e-23
	-1.039203673
	0.590796326792
	3.1815926
	2355.71
	68.73176

	ESCet
	3.981072e-23
	0.527963
	3.760796
	4.191593
	1997.919671
	63.239764

	AMCVn
	3.981072e-23
	3.250796326795
	-0.329203673205
	0.0415926
	742.366
	38.542

	HPLib
	5.011872e-23
	-0.789204
	3.120796
	0.741593
	878.2624
	41.94

	EIPsc
	1.0 e-22
	4.750796
	.020796
	4.181593
	26.676
	7.3216

	bltOPEN7
	5.011872e-23
	-1.639204
	.020796
	0.041593
	1389.132642
	52.711

	bltOPEN8
	3.981072e-23
	-1.3692036
	0.00079632
	0.8315926
	618.523
	35.228

	bltOPEN9
	5.011872e-23
	-1.099204
	1.650796
	1.571593
	136.03
	16.518

	bltOPEN10
	5.011872e-23
	3.430796
	-1.079204
	4.241593
	2175.848
	66.17954

	bltOPEN11
	1.995262e-23
	2.5207963
	1.4507963
	3.071593
	77.807513
	12.486965

	bltOPEN12
	5.011872e-23
	4.200796
	4.740796
	1.231593
	544.5199
	33.008007

	bltOPEN13
	5.011872e-23
	-1.5792036
	1.500796
	5.2515926
	535.628
	32.869728

	bltOPEN14
	2.511886e-23
	-1.45920367
	4.460796
	0.891593
	124.513
	15.829

	bltOPEN15
	2.511886e-23
	4.500796
	1.3007963
	3.671593
	103.0185
	14.357

	bltOPEN16
	2.511886e-23
	0.390796
	1.600963
	0.311593
	154.015
	17.624242

	bltOPEN17
	1.995262e-23
	-1.439204
	4.560796
	4.801593
	107.94
	14.761

	bltOPEN18
	3.162278e-23
	0.4607963
	-1.2092036
	4.371592
	569.05
	33.848

	bltOPEN19
	3.981072e-23
	4.820796
	4.220796
	1.611593
	1037.088
	45.634

	bltOPEN20
	1.995262e-23
	-1.619204
	1.730796
	3.191593
	47.441070
	9.741084


Challenge 1.1.3 (Resolvable Binaries)

For the Resolvable Binaries Challenge, we have identified 18 significant sources (not the full 20) based on FFT of A and E.  Initial template parameters for theta, psi, and iota are at the mid point (i.e., pi/2), and phi and iphase start at ‘pi’.   Details of these runs follow in the next several tables.

The multi-grid approach on the cluster has been adopted for the Challenge 1.1.3.  Several iterations are needed in Run1 [Table 6] to retrieve “converged” stationary parameters for Challenge1.1.3.  Note, the SNR in many sources have been below 10 and many log-likelihood values are also negative.  In Run2, the non-stationary parameters search increases log-likelihood and SNR values, which can be seen in Table 7.  Red values in Table 7 indicate sources that never converged in their finest grid according to our success metric of positive Log-Likelihood and SNR.  We include them here, while recognizing that the results are most likely not accurate; but this is as far as we have been able to converge before the Round 1 Deadline of 1 December.  The other highlighted values are ones that did converge to positive values during the “amplitude” search.  The “Run1 Converged Values” from Table 6 were used in Run 2, and all parameters improved.  Run 3 [Table 8] shows the final converged values of all parameters, with SNR and Log-L.

Table 6.

Run 1: Coarse to Fine grid search for Stationary Parameters 

(multi-grid approach)

	Initial Frequency

(Based on FFT)
	Frequency
	Theta
	Phi
	SNR
	Log Likelihood

	0.001128
	0.0011001908569
	-1.07
	5.491593
	4.774
	11.3621

	0.001388
	0.001387666213994
	1.1892
	1.170796
	3.0280098
	-3.1492288

	0.001599
	0.001599975926716
	-1.08
	2.321593
	3.2858
	-12.168554

	0.001649
	0.001648554951986
	-1.54
	4.72159
	4.8773
	2.162446

	0.002104
	0.002104108083089
	-1.14
	5.9715929
	10.934
	54.110695

	0.00229
	0.0023000517272947
	-0.86
	0.841593
	3.3425
	-86.4217

	0.003499
	0.00349899999999
	-0.79
	4.71159265
	13.6
	21.448

	0.00369
	0.003689615351357
	-0.62
	4.55159265
	16.09433
	74.43053

	0.004635
	0.00463479972839
	-0.19
	4.6015926
	23.5298
	261.874

	0.004734
	0.0047342257029
	-0.32
	4.651590
	11.0440
	-101.92611

	0.004929
	0.0049292702077229
	-0.0598
	4.561592
	71.28
	1660.874

	0.005233
	0.00523277793884
	0.15
	4.69159264
	17.18
	70.32311

	0.005793
	0.00579345140584
	-0.440
	4.671592
	10.0746
	-144.1436

	0.006085
	0.00608488238016738
	-1.55
	3.85158
	5.00838
	-229.2067

	0.00709
	0.007115692250563
	-1.64
	-0.538407345
	3.73486
	-269.1295

	0.007772
	0.0078012936960846
	1.88
	2.43159
	4.767
	-255.527

	0.007828
	0.007861311843865612
	-1.4108
	3.490796
	4.874389
	-242.67643

	0.009183
	0.0092005666680908
	-0.91
	5.731592653
	2.61226
	3.333425


Table 7.

Run 2: Non-stationary Parameters with Multi-Grid Approach from Coarse to Fine

	Frequency
	Theta
	Phi
	Psi
	Iota
	Phase
	SNR
	Log Likelihood

	0.00110019403584837991
	-1.06
	5.57157
	0.1307963
	1.540796
	5.7419
	4.99
	12.35

	0.00138768528748072113
	1.2292
	1.230795
	0.300796
	1.530794
	-2.878
	3.84
	2.53

	0.00159997910563038710
	-1.15
	2.321593
	0.07079632
	1.540796
	6.15159
	3.39
	-10.815

	0.001648554951986
	-1.53
	4.741579
	1.590796
	1.56079
	3.0715919
	4.89
	2.302

	0.002104108083089
	-1.15
	5.981593
	1.580796
	1.6107959
	3.221592
	11.013
	55.076

	0.0023000549062083802
	-0.94
	0.861592
	1.570796
	1.520796
	3.28999
	3.65685
	-80.404

	0.00349898410542683579
	-0.710
	4.701592
	4.440795
	1.5007962
	4.89159
	16.912
	99.53

	0.00368962806701316447
	-0.64
	4.501592
	1.6707962
	4.550796
	1.5815919
	19.113
	136.7669

	0.00463479972838
	-0.19
	4.6215926
	2.1207959
	-1.9292036
	4.1715
	35.928
	635.483

	0.00473423206072877672
	-0.25
	4.661589
	1.040796
	4.550796
	1.1015
	19.7204
	105.844

	0.00492927338663728780
	-0.0998
	4.5715919
	1.610795
	3.140795
	2.74159
	89.99
	4043.48

	0.005232777938839
	0.14
	4.6915926
	5.010795
	-1.4392
	2.7315
	22.7434
	215.549

	0.00579344186909983277
	-0.4
	4.7015926
	-1.229203
	4.57070795
	4.841592
	14.4218
	-58.924

	0.0060848792012529
	-1.54
	3.7715889
	3.040796
	1.5607963
	6.64159
	5.08785
	-227.08218

	0.007115685892734
	-1.63
	-0.528407
	3.070796
	1.57079
	0.641592
	3.96587
	-263.059

	0.00780129051717022
	1.88
	2.4115919
	0.0707963
	1.570796
	6.641592
	4.79568
	-254.677

	0.00786131502278000077
	-1.4108
	3.450796
	3.070796
	1.570796
	-0.258407
	4.9213
	-241.536

	0.00920056348917641133
	-0.91
	5.771592
	3.57079
	1.5707963
	-0.258407
	3.1294
	4.885797


Table 8

Run 2: Amplitude Search for Challenge 1.1.3 with Multi-Grid Approach 

	Source
	Amplitude
	Frequency
	Theta
	Phi
	Psi
	Iota
	Phase
	SNR
	Log Likelihood

	bltOPEN101
	3.981072e-23
	0.0110019403584837991
	-1.06
	5.591579
	0.150796
	1.540796
	5.741925
	5.008
	12.4183

	bltOPEN102
	1.995262e-23
	0.0013876852874807211
	1.2492
	1.250795
	0.290796
	1.510795
	-2.898407
	3.8889
	7.4794

	bltOPEN103
	1.584893e-23
	0.0015999791056303871
	-1.13
	2.321593
	0.070796
	1.520796
	6.131593
	3.425
	5.841667

	bltOPEN104
	1.995262e-23
	0.001648554951986
	-1.53
	4.76158
	1.610796
	1.550796
	3.071592
	4.8977
	11.96207

	bltOPEN105
	3.162278e-23
	0.0021041080830890000
	-1.14
	5.981593
	1.590796
	1.630796
	3.201593
	11.0228
	60.6639

	bltOPEN106
	7.943282e-24
	0.0023000549062083802
	-0.96
	0.861593
	1.590796
	1.500796
	3.30999
	3.74505
	6.941142

	bltOPEN107
	2.511886e-23
	0.0034989841054268357
	-0.69
	4.701593
	4.430796
	1.480796
	4.871590
	17.0881
	445.92

	bltOPEN108
	2.511886e-23
	0.0036896280670131644
	-0.63
	4.501593
	1.690796
	4.530796
	1.571592
	19.2677
	185.24

	bltOPEN109
	3.162278e-23
	0.0046347997283890003
	-0.19
	4.621593
	2.130796
	-1.9492
	4.19159
	36.0145
	643.082

	bltOPEN110
	2.511886e-23
	0.0047342320607287767
	-0.25
	4.66158
	1.020796
	4.530796
	1.081500
	19.9398
	198.058

	bltOPEN111
	3.981072e-23
	0.0049292733866372878
	-0.0998
	4.571592
	1.600796
	3.140796
	2.721593
	89.99
	4042.404

	bltOPEN112
	2.511886e-23
	0.005232777938839999
	0.14
	4.691593
	5.030796
	-1.419204
	2.711592
	22.8846
	259.0253

	bltOPEN113
	
	
	
	
	
	
	
	
	

	bltOPEN114
	7.943282e-24
	0.0060848792012529922
	-1.54
	3.751589
	3.020796
	1.540796
	6.641592
	5.10456
	12.990118

	bltOPEN115
	
	
	
	
	
	
	
	
	

	bltOPEN116
	
	
	
	
	
	
	
	
	

	bltOPEN117
	
	
	
	
	
	
	
	
	

	bltOPEN118
	
	
	
	
	
	
	
	
	


As usual, the stationary and non-stationary parameters are found first; then the dimensionless amplitude is extracted across 10-21 to 10-25.  Recall that in Challenge 1.1.2, only 2 runs needed to be performed in the Cluster.  Challenge 1.1.3 required 4 (coarse ( fine) grid-search processes to converge and extract stationary source parameters.  The non-stationary parameter convergence also required in 4 search processes (coarse ( fine).  The Challenge 1.1.3 is a 7-dimension search problem rather than the 4-dimension search of Challenge 1.1.2 (recall f, theta, and phi are provided in 1.1.2).  For the Resolvable Binaries, the frequencies of source parameters are very close, and convergence took multiple hours, even on the fast Cluster.  In addition, only 18 sources were found, based on our FFT preliminary search.  No other filter or transform method has been attempted at this time.  Not all parameters have converged successfully.  We will continue to refine our procedures for Challenges 1.1.2 and 1.1.3, outside of the MLDC Round 1 Challenge.

General Implications of Grid Search Method for All Challenges

The coarse grid leads to the region where “real” source parameters are available.  Once search space resolves to the finer grid, the greater the computation cost.  It has proven to be a serious limitation for us to begin with much finer grids initially, and it makes it difficult to automate sizing of subsequent grid refinements.  With reference to Challenge 1.1.1a and b, the grid refinements pattern does not fall into a common category due to the complex structure of the signal in Challenge ‘b’.  During these blind challenges, we have used manual grid-refinement for the analysis.  The ‘get_SNR_logL’ function currently has to be executed at every grid point to compute SNR and log-likelihood values.  The ‘get_SNR_logL’ function is evaluated at the vertex of the grids, rather than the centroid of the grid,  and this introduces possible errors if the ideal value is not on a vertex.  This is the basis of the need for such extensive fine-scale search.  Actually, certain grid points could be eliminated following a simpler strategy rather than computing SNR and logL values at every point.  However, such a strategy needs to involve data-stream classification and search for the main contribution time-periods for the peak frequency.  This strategy has not yet been implement, but we are endeavoring to articulate and prove it.  The ‘get_SNR_logL’ function in turn calls low-frequency function [a low-pass filter] and noise function.  Every call involves multiple computations of these various functions.  Inside the low-frequency function, multiple loops are needed to compute the amplitude and Doppler modulation.  In the low-frequency function, the memory is released and allocated dynamically; but allocating and releasing memory dynamically increases computation cost.  Due to the sensitivity of the problem, the grid size must be sliced extremely thin to achieve the best solution for the source parameters.  This slicing of the grid increases computation cost exponentially.  During the Challenge 1.1.2 search process [Table 5], even though the number of template searches (i.e., grid points) is equivalent in all 20 cases, certain sources converged faster than others.  We believe the reason behind the slower convergence is tied directly to the complex structure of signal and/or close proximity of the sources and wave patterns in frequency-space.

Benchmark Analysis 

Initial runs of Challenges 1.1.1a and b search process were performed using a Sun Solaris (Sparc) Server.  The code was implemented as a single thread approach [see Table 1].  The first 3 runs took between 20 min. to 3 hrs to converge.  From Run 4 onwards, convergence took approximately between 3-6 hours due to the finer grid size.  Run 14 took more than 100 hours, which represents the finest grid with respect to 6-dimension search.  The template search (‘get’ calls) also increases time-of-execution over the coarse grid to fine grid, as seen in the following, Table 9.

Table 9.  Times for convergence of each simulation in Challenge 1.1.1a

	Run
	Template Search for Challenge 1.1.1a

(number of times ‘get_SNR_logL’ called) 
	Time for convergence

	1
	82656
	Less than 40 min.

	2
	82656
	Less than 40 min.

	3
	814464
	1h 10 min

	4
	5058585
	6h 28min

	5
	665091
	1h 16min

	6
	404271
	0h 37min

	7
	18491
	0h 20min

	8
	1331
	0h 5min

	9
	2924207
	3h 35min

	10
	970299
	2hr 15min

	11
	6539203
	6hr 30min

	12
	6539203
	8hr 0min

	13
	6539203
	10hr 0min

	14
	91733851
	More than 100 Hrs

	15
	640625
	Less than 2 hr


The relatively short time for Run 15 is due to the fact that therein only the amplitude is searched while other parameters are held stable.  Overall, the time for convergence for each run depends on the number in template search (i.e., the number of times ‘get_SNR_logL’ has to be called).  The more often a template search is called, the longer the convergence time, in direct proportionality.

Future Directions, Comments, and Conclusions

The MLDC grid search method is an exhaustive search method; stream-lining the search process in an optimized way, while maintaining accuracy and high log-likelihood is of the highest priority.  Ideally, the ‘get_SNR_logL’ function would need to be called only a minimal number of times to avoid computation cost in a multi-dimensional grid search. Stopping criteria would need to be established for the search process; for example, once a ridge-pathway of ideal solutions is found in the coarse grid, then alter the actual search parameters to stay on that pathway.  This approach could lead to autonomous grid refinement based on these constraints.  Rapid convergence of the search process using heuristic approaches should be evaluated based on hybrid techniques.  Resolving close, complex signals in a given time-series is a significant challenge at low frequency.  In addition, aliasing creates a similar power-spectrum at higher frequencies in the FFT; and if one does not know in advance what frequency band to look across, a major ambiguity will need to be resolved.  

Currently, we run an FFT on the data-stream, and manually/visually select probable regions of GW source signals.  The structure of the presumed signals in frequency-space therefore determines both the initial guess center frequency and the realistic range for detailed search.  It would be very interesting to try to automate at least part of this process.  For example, the source EIPsc verification binary does not show a signal in the FFT of channels A and E, yet the MLDC-galactic.c codes finds the source parameters.  We found that doing an FFT on the Michelson-like variables X, Y, and Z provided a possible solution:  the peak values of X, Y, and Z when substituted into the A and E formulae essentially cancelled each other out [2X ~ -Y-Z  and  Z-Y ~ 0].  Thus, the method of visually looking for sources in A and E is fallible.  A better process characterizing the frequency sources is needed, and ultimately some automation or software assistance would be very helpful.

Establishing source databases for known [verification and resolvable] binaries such as AM Cvn stars, known cataclysmic variables, certain Binary WD’s, and some compact X-ray binaries, will allow a ‘quick-and-dirty’ pattern recognition software to identify and extract these sources in a new LISA time-series.  Removing the “knowns” allows for huge data reduction in the search-discovery phase.  But, such databases need to be constructed in a format amenable to data-mining for pattern recognition.  In addition, such early matches could be done before waiting for one complete interferometer orbit.

In addition to data-mining techniques, two major approaches need to be developed.  These are broadly categorized as dimension reduction and data reduction.

Once analysis moves from a 7-dimension parameter space to 17-dimension space, any viable search process will have to be highly optimized, based probably on hybrid techniques, in order to reach convergence.  At the moment, searching 7 dimensions takes substantial time using the current formats; 17-dimensional search will swamp these methods.  Consider also that the strategy of searching stationary parameters first and then the non-stationary ones will no longer work:  f, fdot, and fdoubledot will have to be searched together because if ‘f’ is not constant, then the real search will have to be over ‘f’, its slope, and its curvature, thus mixing in non-stationary variables.  Here, dimension reduction will require analysis of possible proxy dimensions (or mathematical projections) that can represent composite data.

Recursive partitioning of the data into smaller time-bins could be used to identify the signals (still based on the FFTs), and this would enable further dimension reduction.  In the higher-order dimensional search where certain parameters are (physically) correlated, PCA or ICA could be applied to identify such source parameter connections.  Instead of performing a sequential search process, a hybrid optimized search process could be performed using various intelligent algorithms and conjugate gradient-descent methods.

The key challenge is detecting the signal from the time-series’ power spectrum.  The signals could be classified based on certain energy level using a neural network approach.  Once a signal was identified and processed using the neural network, the data corresponding to the signal-region could be further processed ‘locally’ to determine the requisite source parameters rather than dealing the entire time-series.  Such data reduction would enable much faster convergence. 

The multi-dimensional grid search method employed here focuses on one initial template.  An improved approach to the search process would be to search multiple templates (from derived databases) in parallel rather than sequentially.  Computational cost and resolution capabilities have to be extended for complex signal structure.  Symmetric Multi-Processing (SMP) using cluster-computing technology is an alternative for rapid and faster convergence.  Also, implementing Parallel Virtual Machine (PVM) techniques to the grid search process would lead to a robust and more scalable real-time search process.
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